Nature

Post-January 6th deplatforming reduced the reach of misinformation on Twitter

81


  • Lazer, D. The rise of the social algorithm. Science 348, 1090–1091 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Jhaver, S., Boylston, C., Yang, D. & Bruckman, A. Evaluating the effectiveness of deplatforming as a moderation strategy on Twitter. Proc. ACM Hum.-Comput. Interact. 5, 381 (2021).

    Article 

    Google Scholar
     

  • Broniatowski, D. A., Simons, J. R., Gu, J., Jamison, A. M. & Abroms, L. C. The efficacy of Facebook’s vaccine misinformation policies and architecture during the COVID-19 pandemic. Sci. Adv. 9, eadh2132 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, A. G. et al. Using administrative records and survey data to construct samples of tweeters and tweets. Public Opin. Q. 85, 323–346 (2021).

    Article 

    Google Scholar
     

  • Shugars, S. et al. Pandemics, protests, and publics: demographic activity and engagement on Twitter in 2020. J. Quant. Descr. Digit. Media https://doi.org/10.51685/jqd.2021.002 (2021).

  • Imbens, G. W., & Lemieux, T. Regression discontinuity designs: a guide to practice. J. Econom. 142, 615–635 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Gerber, A. S. & Green, D. P. Field Experiments: Design, Analysis, and Interpretation (W.W. Norton, 2012).

  • Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. & Lazer, D. Fake news on Twitter during the 2016 U.S. presidential election. Science 363, 374–378 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Munger, K. & Phillips, J. Right-wing YouTube: a supply and demand perspective. Int. J. Press Polit. 27, 186–219 (2022).

    Article 

    Google Scholar
     

  • Guess, et al. How do social media feed algorithms affect attitudes and behavior in an election campaign? Science 381, 398–404 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Persily, N. in New Technologies of Communication and the First Amendment: The Internet, Social Media and Censorship (ed. Bollinger L. C. & Stone, G. R.) (Oxford Univ. Press, 2022).

  • Sevanian, A. M. Section 230 of the Communications Decency Act: a ‘good Samaritan’ law without the requirement of acting as a ‘good Samaritan’. UCLA Ent. L. Rev. https://doi.org/10.5070/LR8211027178 (2014).

  • Lazer, D. M. J. et al. The science of fake news. Science 359, 1094–1096 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzor, N. Digital constitutionalism: using the rule of law to evaluate the legitimacy of governance by platforms. Soc. Media Soc. 4, 2056305118787812 (2018).


    Google Scholar
     

  • Napoli, P. M. Social Media and the Public Interest (Columbia Univ. Press, 2019).

  • DeNardis, L. & Hackl, A. M. Internet governance by social media platforms. Telecomm. Policy 39, 761–770 (2015).

    Article 

    Google Scholar
     

  • TwitterSafety. An update following the riots in Washington, DC. Twitter https://blog.x.com/en_us/topics/company/2021/protecting–the-conversation-following-the-riots-in-washington– (2021).

  • Twitter. Civic Integrity Policy. Twitter https://help.twitter.com/en/rules-and-policies/election-integrity-policy (2021).

  • Promoting safety and expression. Facebook https://about.facebook.com/actions/promoting-safety-and-expression/ (2021).

  • Dwoskin, E. Trump is suspended from Facebook for 2 years and can’t return until ‘risk to public safety is receded’. The Washington Post https://www.washingtonpost.com/technology/2021/06/03/trump-facebook-oversight-board/ (4 June 2021).

  • Huszár, F. et al. Algorithmic amplification of politics on Twitter. Proc. Natl Acad. Sci. USA 119, e2025334119 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Guess, A. M., Nyhan, B. & Reifler, J. Exposure to untrustworthy websites in the 2016 US election. Nat. Hum. Behav. 4, 472–480 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunstein, C. R. #Republic: Divided Democracy in the Age of Social Media (Princeton Univ. Press, 2017).

  • Timberg, C., Dwoskin, E. & Albergotti, R. Inside Facebook, Jan. 6 violence fueled anger, regret over missed warning signs. The Washington Post https://www.washingtonpost.com/technology/2021/10/22/jan-6-capitol-riot-facebook/ (22 October 2021).

  • Chandrasekharan, E. et al. You can’t stay here: the efficacy of Reddit’s 2015 ban examined through hate speech. Proc. ACM Hum. Comput. Interact. 1, 31 (2017).

    Article 

    Google Scholar
     

  • Matias, J. N. Preventing harassment and increasing group participation through social norms in 2,190 online science discussions. Proc. Natl Acad. Sci. USA 116, 9785–9789 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yildirim, M. M., Nagler, J., Bonneau, R. & Tucker, J. A. Short of suspension: how suspension warnings can reduce hate speech on Twitter. Perspect. Politics 21, 651–663 (2023).

    Article 

    Google Scholar
     

  • Guess, A. M. et al. Reshares on social media amplify political news but do not detectably affect beliefs or opinions. Science 381, 404–408 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nyhan, B. et al. Like-minded sources on Facebook are prevalent but not polarizing. Nature 620, 137–144 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang, S. Elon Musk’s X restructuring curtails disinformation research, spurs legal fears. Reuters https://www.reuters.com/technology/elon-musks-x-restructuring-curtails-disinformation-research-spurs-legal-fears-2023-11-06/ (6 November 2023).

  • Duffy, C. For misinformation peddlers on social media, it’s three strikes and you’re out. Or five. Maybe more. CNN Business https://edition.cnn.com/2021/09/01/tech/social-media-misinformation-strike-policies/index.html (1 September 2021).

  • Conger, K. Twitter removes Chinese disinformation campaign. The New York Times https://www.nytimes.com/2020/06/11/technology/twitter-chinese-misinformation.html (11 June 2020).

  • Timberg, C. & Mahtani, S. Facebook bans Myanmar’s military, citing threat of new violence after Feb. 1 coup. The Washington Post https://www.washingtonpost.com/technology/2021/02/24/facebook-myanmar-coup-genocide/ (24 February 2021).

  • Barry, D. & Frenkel, S. ‘Be there. Will be wild!’: Trump all but circled the date. The New York Times https://www.nytimes.com/2021/01/06/us/politics/capitol-mob-trump-supporters.html (6 January 2021).

  • Timberg, C. Twitter ban reveals that tech companies held keys to Trump’s power all along. The Washington Post https://www.washingtonpost.com/technology/2021/01/14/trump-twitter-megaphone/ (14 January 2021).

  • Dwoskin, E. & Tiku, N. How Twitter, on the front lines of history, finally decided to ban Trump. The Washington Post https://www.washingtonpost.com/technology/2021/01/16/how-twitter-banned-trump/ (16 January 2021).

  • Harwell, D. New video undercuts claim Twitter censored pro-Trump views before Jan. 6. The Washington Post https://www.washingtonpost.com/technology/2023/06/23/new-twitter-video-jan6/ (23 June 2023).

  • Romm, T. & Dwoskin, E. Twitter purged more than 70,000 accounts affiliated with QAnon following Capitol riot. The Washington Post https://www.washingtonpost.com/technology/2021/01/11/trump-twitter-ban/ (11 January 2021).

  • Denham, H. These are the platforms that have banned Trump and his allies. The Washington Post https://www.washingtonpost.com/technology/2021/01/11/trump-banned-social-media/ (13 January 2021).

  • Graphika Team. DisQualified: network impact of Twitter’s latest QAnon enforcement. Graphika Blog https://graphika.com/posts/disqualified-network-impact-of-twitters-latest-qanon-enforcement/ (2021).

  • Dwoskin, E. & Timberg, C. Misinformation dropped dramatically the week after Twitter banned Trump and some allies. The Washington Post https://www.washingtonpost.com/technology/2021/01/16/misinformation-trump-twitter/ (16 January 2021).

  • Harwell, D. & Dawsey, J. Trump is sliding toward online irrelevance. His new blog isn’t helping. The Washington Post https://www.washingtonpost.com/technology/2021/05/21/trump-online-traffic-plunge/ (21 May 2021).

  • Olteanu, A., Castillo, C., Boy, J. & Varshney, K. The effect of extremist violence on hateful speech online. In Proc. 12th International AAAI Conference on Web and Social Media https://doi.org/10.1609/icwsm.v12i1.15040 (ICWSM, 2018).

  • Lin, H. et al. High level of correspondence across different news domain quality rating sets. PNAS Nexus 2, gad286 (2023).

    Article 

    Google Scholar
     

  • Abilov, A., Hua, Y., Matatov, H., Amir, O., & Naaman, M. VoterFraud2020: a multi-modal dataset of election fraud claims on Twitter.” Proc. Int. AAAI Conf. Weblogs Soc. Media 15, 901–912 (2021).

  • Calonico, S., Cattaneo, M. D. & Titiunik, R. Robust nonparametric confidence intervals for regression-discontinuity designs. Econometrica 82, 2295–2326 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Jackson, S., Gorman, B. & Nakatsuka, M. QAnon on Twitter: An Overview (Institute for Data, Democracy and Politics, George Washington Univ. 2021).

  • Shearer, E. & Mitchell, A. News use across social media platforms in 2020. Pew Research Center https://www.pewresearch.org/journalism/2021/01/12/news-use-across-social-media-platforms-in-2020/ (2021).

  • McGregor, S. C. Social media as public opinion: How journalists use social media to represent public opinion. Journalism 20, 1070–1086 (2019).

    Article 

    Google Scholar
     

  • Hammond-Errey, M. Elon Musk’s Twitter is becoming a sewer of disinformation. Foreign Policy https://foreignpolicy.com/2023/07/15/elon-musk-twitter-blue-checks-verification-disinformation-propaganda-russia-china-trust-safety/ (15 July 2023).

  • Joseph, K. et al. (Mis)alignment between stance expressed in social media data and public opinion surveys. Proc. 2021 Conference on Empirical Methods in Natural Language Processing 312–324 (Association for Computational Linguistics, 2021).

  • Robertson, R. E. et al. Auditing partisan audience bias within Google search. Proc. ACM Hum. Comput. Interact. 2, 148 (2018).

  • McCrary, J. Manipulation of the running variable in the regression discontinuity design: a density. Test 142, 698–714 (2008).

    MathSciNet 

    Google Scholar
     

  • Roth, J., Sant’Anna, P. H. C., Bilinski, A. & Poe, J. What’s trending in difference-in-differences? A synthesis of the recent econometrics literature. J. Econom. 235, 2218–2244 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wing, C., Simon, K. & Bello-Gomez, R. A. Designing difference in difference studies: best practices for public health policy research. Annu. Rev. Public Health 39, 453–469 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Baker, A. C., Larcker, D. F. & Wang, C. C. Y. How much should we trust staggered difference-in-differences estimates? J. Financ. Econ. 144, 370–395 (2022).

    Article 

    Google Scholar
     

  • Callaway, B. & Sant’Anna, P. H. C. Difference-in-differences with multiple time periods. J. Econom. 225, 200–230 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing, v.4.3.1. https://www.R-project.org/ (2023).

  • rdrobust: Robust data-driven statistical inference in regression-discontinuity designs. https://cran.r-project.org/package=rdrobust (2023).

  • Calonico, S., Cattaneo, M. D. & Titiunik, R. Optimal data-driven regression discontinuity plots. J. Am. Stat. Assoc. 110, 1753–1769 (2015).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Calonico, S., Cattaneo, M. D. & Farrell, M. H. On the effect of bias estimation on coverage accuracy in nonparametric inference. J. Am. Stat. Assoc. 113, 767–779 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).


    Google Scholar
     

  • Cameron, A. C., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. J. Bus. Econ. Stat. 29, 238–249 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. https://doi.org/10.18637/jss.v011.i10 (2004).

  • Eckles, D., Karrer, B. & Johan, U. Design and analysis of experiments in networks: reducing bias from interference. J. Causal Inference https://doi.org/10.1515/jci-2015-0021 (2016).





  • Source link

    UtahDigitalNews.com