Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).
dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).
Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).
Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. Giving the early fossil record of sponges a squeeze. Biol. Rev. 89, 972–1004 (2014).
Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).
Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature 596, 87–91 (2021).
Neuweiler, F. et al. Keratose sponges in ancient carbonates—a problem of interpretation. Sedimentology 70, 927–968 (2023).
Tang, Q., Wan, B., Yuan, X., Muscente, A. D. & Xiao, S. Spiculogenesis and biomineralization in early sponge animals. Nat. Commun. 10, 3348 (2019).
Aguilar-Camacho, J. M., Doonan, L. & McCormack, G. P. Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol. Phylogenet. Evol. 131, 245–253 (2019).
Murdock, D. J. E. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol. Rev. 95, 1372–1392 (2020).
Xiao, S. Ediacaran sponges, animal biomineralization and skeletal reefs. Proc. Natl Acad. Sci. USA 117, 20997–20999 (2020).
Shimizu, K. et al. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat. Commun. 15, 181 (2024).
Dunn, F. S. et al. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. Sci. Adv. 7, eabe0291 (2021).
Liu, A. G., Matthews, J. J., Menon, L. R., McIlroy, D. & Brasier, M. D. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281, 20141202 (2014).
Dunn, F. S. et al. A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK. Nat. Ecol. Evol. 6, 1095–1104 (2022).
Chen, Z., Zhou, C., Yuan, X. & Xiao, S. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573, 412–415 (2019).
Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).
Nettersheim, B. J. et al. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nat. Ecol. Evol. 3, 577–581 (2019).
Zumberge, J. A. et al. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nat. Ecol. Evol. 2, 1709–1714 (2018).
Muscente, A. D., Marc Michel, F., Dale, J. G. & Xiao, S. Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques. Precambrian Res. 263, 142–156 (2015).
Sperling, E. A., Robinson, J. M., Pisani, D. & Peterson, K. J. Where’s the glass? Biomarkers, molecular clocks and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8, 24–36 (2010).
Wang, X. et al. The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China. J. Paleontol. 94, 1034–1050 (2020).
Wan, B. et al. A tale of three taphonomic modes: the Ediacaran fossil Flabellophyton preserved in limestone, black shale and sandstone. Gondwana Res. 84, 296–314 (2020).
Chen, Z. et al. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci. Rep. 4, 4180 (2014).
Chen X., Zhou P., Zhang B., Wei, K. & Zhang, M. Lithostratigraphy, biostratigraphy, sequence stratigraphy and carbon isotope chemostratigraphy of the upper Ediacarian in Yangtze Gorges and their significance for chronostratigraphy. South China Geol. 32, 87–105 (2016).
Yang, B., Warren, L. V., Steiner, M., Smith, E. F. & Liu, P. Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus. J. Paleontol. 96, 256–273 (2022).
Wang, Y., Wang, Y. & Du, W. A rare disc-like holdfast of the Ediacaran macroalga from South China. J. Paleontol. 91, 1091–1101 (2017).
Laflamme, M., Gehling, J. G. & Droser, M. L. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. J. Paleontol. 92, 323–335 (2018).
Hofmann, H. J., O’Brien, S. J. & King, A. F. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. J. Paleontol. 82, 1–36 (2008).
Mitchell, E. G. & Harris, S. Mortality, population and community dynamics of the glass sponge dominated community “The Forest of the Weird” from the Ridge Seamount, Johnston Atoll, Pacific Ocean. Front. Mar. Sci. 7, 565171 (2020).
Brusca, R. C., Moore, W. & Shuster, S. M. Invertebrates (Sinauer Associates, 2016).
Xiao, S., Shen, B., Zhou, C., Xie, G. & Yuan, X. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc. Natl Acad. Sci. USA 102, 10227–10232 (2005).
Ford, T. D. Pre-Cambrian fossils from Charnwood Forest. Proc. Yorks. Geol. Soc. 31, 211–217 (1958).
Glaessner, M. F. & Daily, B. The geology and Late Precambrian fauna of the Ediacara fossil reserve. Rec. South Aust. Mus. 13, 369–401 (1959).
Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C. & Anderson, M. M. Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland. J. Paleontol. 78, 1031–1036 (2004).
Sperling, E. A., Peterson, K. J. & Laflamme, M. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9, 24–33 (2011).
Hahn, G. & Pflug, H. D. Polypenartige organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geol. Palaeontol. 19, 1–13 (1985).
Gehling, J. G. & Rigby, J. K. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70, 185–195 (1996).
Francovschi, I., Grădinaru, E., Li, H., Shumlyanskyy, L. & Ciobotaru, V. U–Pb geochronology and Hf isotope systematics of detrital zircon from the late Ediacaran Kalyus Beds (East European Platform): palaeogeographic evolution of southwestern Baltica and constraints on the Ediacaran biota. Precambrian Res. 355, 106062 (2021).
Vaziri, S. H., Majidifard, M. R. & Laflamme, M. Diverse assemblage of Ediacaran fossils from Central Iran. Sci. Rep. 8, 5060 (2018).
Smith, E. F., Nelson, L. L., Tweedt, S. M., Zeng, H. & Workman, J. B. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proc. R. Soc. B 284, 20170934 (2017).
McMahon, S., Tarhan, L. G. & Briggs, D. E. G. Decay of the sea anemone Metridium (Actiniaria): implications for the preservation of cnidarian polyps and other soft-bodied diploblast-grade animals. Palaios 32, 388–395 (2017).
Ou, Q. et al. Dawn of complex animal food webs: a new predatory anthozoan (Cnidaria) from Cambrian. Innovation 3, 100195 (2022).
Zhao, Y. et al. An early Cambrian mackenziid reveals links to modular Ediacaran macro-organisms. Pap. Palaeontol. 8, e1412 (2022).
Hall, J. & Clarke, J. M. A Memoir on the Palaeozoic Reticulate Sponges: Constituting the Family Dictyospongidae (Wynkoop Hallenbeck Crawford Company, 1898).
Carrera, M., Rustan, J., Vaccari, N. & Ezpeleta, M. A Mississippian hexactinellid sponge from the Western Gondwana: taxonomic and paleobiogeographic implications. Acta Palaeontol. Pol. 63, 63–70 (2018).
Rigby, J. K. & Keyes, R. First report of hexactinellid dictyosponges and other sponges from the Upper Mississippian Bangor Limestone, northwestern Alabama. J. Paleontol. 64, 886–897 (1990).
Finks, R. M., Reid, R. E. H. & Rigby, J. K. Treatise on Invertebrate Paleontology Part E (Revised) (Geological Society of America and the University of Kansas, 2004).
Chahud, A. & Fairchild, T. R. A new invertebrate from the Ponta Grossa Formation (Devonian), Paraná Basin, Brazil. Rev. Bras. Paleontol. 23, 279–282 (2020).
Wulff, J. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 103–126 (Springer, 2016).
Keupp, H. & Schweigert, G. Neochoiaella n. gen. (Demospongeae, Choiaellidae)—a second poriferan Lazarus taxon from the Solnhofen Plattenkalk (Upper Jurassic, Southern Germany)? Paläontol. Z. 86, 269–274 (2012).
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000).
Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).
Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).
Schlichter, D. in Biology of the Integument: Invertebrates (eds Bereiter-Hahn, J. et al.) 79–95 (Springer, 1984).
de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017).
Leys, S. P., Mackie, G. O. & Reiswig, H. M. The biology of glass sponges. Adv. Mar. Biol. 52, 1–145 (2007).
Finks, R. M. in Series in Geology, Notes for Short Course (ed. Broadhead, T. W.) 101–115 (Univ. Tennessee, 1983).
Nonnenmacher, T. F., Losa, G. A. & Weibel, E. R. Fractals in Biology and Medicine (Birkhäuser, 2013).
Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).
Riesgo, A., Maldonado, M., López-Legentil, S. & Giribet, G. A proposal for the evolution of cathepsin and silicatein in sponges. J. Mol. Evol. 80, 278–291 (2015).
Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).
Mackie, G. O., Singla, C. L. & Smith, J. E. Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos. Trans. R. Soc. Lond. B 301, 365–400 (1983).
Wu, C. et al. The rangeomorph fossil Charnia from the Ediacaran Shibantan biota in the Yangtze Gorges area, South China. J. Paleontol. https://doi.org/10.1017/jpa.2022.97 (2022).
Reid, R. E. H. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland Part I. Monogr. Palaeontogr. Soc. 111, 1–46 (1958).
Xiao, S. Extinctions, morphological gaps, major transitions, stem groups and the origin of major clades, with a focus on early animals. Acta Geol. Sin. Engl. Ed. 96, 1821–1829 (2022).
Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Ronquist, F., Huelsenbeck, J., Teslenko, M., Zhang, C. & Nylander, J. Draft MrBayes version 3.2 manual: tutorials and model summaries. GitHub https://github.com/NBISweden/MrBayes/blob/develop/doc/manual/Manual_MrBayes_v3.2.pdf (2020).
Xiao, S., Chen, Z., Pang, K., Zhou, C. & Yuan, X. The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition. J. Geol. Soc. 178, 2020–2135 (2021).
Condon, D. et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).
Huang, T., Chen, D., Ding, Y., Zhou, X. & Zhang, G. SIMS U-Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran–Cambrian boundary succession in the Three Gorges area, South China. J. Earth Sci. 31, 69–78 (2020).
Okada, Y. et al. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res. 25, 1027–1044 (2014).
An, Z. et al. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Res. 271, 243–253 (2015).
Xiao, S., Bykova, N., Kovalick, A. & Gill, B. C. Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: implications for stratigraphic correlation and sources of sedimentary organic carbon. Precambrian Res. 302, 171–179 (2017).
Zhou, C. et al. The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res. 288, 23–38 (2017).
Liu, Q., Huang, D. & Gong, Y. Sponge fossils from the Cambrian Mantou Formation of Hebi, Henan, Central China. J. China Univ. Geosci. 37, 129–135 (2012).
Virtual Collection (Digital Atlas of Ancient Life, accessed 23 April 2024); www.digitalatlasofancientlife.org/vc/.