Nature

A late-Ediacaran crown-group sponge animal

32


  • Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7, 257–265 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. Giving the early fossil record of sponges a squeeze. Biol. Rev. 89, 972–1004 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

    Article 

    Google Scholar
     

  • Turner, E. C. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Nature 596, 87–91 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuweiler, F. et al. Keratose sponges in ancient carbonates—a problem of interpretation. Sedimentology 70, 927–968 (2023).

    Article 

    Google Scholar
     

  • Tang, Q., Wan, B., Yuan, X., Muscente, A. D. & Xiao, S. Spiculogenesis and biomineralization in early sponge animals. Nat. Commun. 10, 3348 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguilar-Camacho, J. M., Doonan, L. & McCormack, G. P. Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol. Phylogenet. Evol. 131, 245–253 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murdock, D. J. E. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol. Rev. 95, 1372–1392 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xiao, S. Ediacaran sponges, animal biomineralization and skeletal reefs. Proc. Natl Acad. Sci. USA 117, 20997–20999 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, K. et al. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat. Commun. 15, 181 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, F. S. et al. The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs. Sci. Adv. 7, eabe0291 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, A. G., Matthews, J. J., Menon, L. R., McIlroy, D. & Brasier, M. D. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B 281, 20141202 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, F. S. et al. A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK. Nat. Ecol. Evol. 6, 1095–1104 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z., Zhou, C., Yuan, X. & Xiao, S. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature 573, 412–415 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, G. D. et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–721 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nettersheim, B. J. et al. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nat. Ecol. Evol. 3, 577–581 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zumberge, J. A. et al. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nat. Ecol. Evol. 2, 1709–1714 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muscente, A. D., Marc Michel, F., Dale, J. G. & Xiao, S. Assessing the veracity of Precambrian ‘sponge’ fossils using in situ nanoscale analytical techniques. Precambrian Res. 263, 142–156 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sperling, E. A., Robinson, J. M., Pisani, D. & Peterson, K. J. Where’s the glass? Biomarkers, molecular clocks and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8, 24–36 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China. J. Paleontol. 94, 1034–1050 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wan, B. et al. A tale of three taphonomic modes: the Ediacaran fossil Flabellophyton preserved in limestone, black shale and sandstone. Gondwana Res. 84, 296–314 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci. Rep. 4, 4180 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X., Zhou P., Zhang B., Wei, K. & Zhang, M. Lithostratigraphy, biostratigraphy, sequence stratigraphy and carbon isotope chemostratigraphy of the upper Ediacarian in Yangtze Gorges and their significance for chronostratigraphy. South China Geol. 32, 87–105 (2016).

  • Yang, B., Warren, L. V., Steiner, M., Smith, E. F. & Liu, P. Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus. J. Paleontol. 96, 256–273 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y., Wang, Y. & Du, W. A rare disc-like holdfast of the Ediacaran macroalga from South China. J. Paleontol. 91, 1091–1101 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Laflamme, M., Gehling, J. G. & Droser, M. L. Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia. J. Paleontol. 92, 323–335 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hofmann, H. J., O’Brien, S. J. & King, A. F. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. J. Paleontol. 82, 1–36 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Mitchell, E. G. & Harris, S. Mortality, population and community dynamics of the glass sponge dominated community “The Forest of the Weird” from the Ridge Seamount, Johnston Atoll, Pacific Ocean. Front. Mar. Sci. 7, 565171 (2020).

    Article 

    Google Scholar
     

  • Brusca, R. C., Moore, W. & Shuster, S. M. Invertebrates (Sinauer Associates, 2016).

  • Xiao, S., Shen, B., Zhou, C., Xie, G. & Yuan, X. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc. Natl Acad. Sci. USA 102, 10227–10232 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, T. D. Pre-Cambrian fossils from Charnwood Forest. Proc. Yorks. Geol. Soc. 31, 211–217 (1958).

    Article 

    Google Scholar
     

  • Glaessner, M. F. & Daily, B. The geology and Late Precambrian fauna of the Ediacara fossil reserve. Rec. South Aust. Mus. 13, 369–401 (1959).


    Google Scholar
     

  • Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C. & Anderson, M. M. Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland. J. Paleontol. 78, 1031–1036 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Sperling, E. A., Peterson, K. J. & Laflamme, M. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9, 24–33 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn, G. & Pflug, H. D. Polypenartige organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geol. Palaeontol. 19, 1–13 (1985).

  • Gehling, J. G. & Rigby, J. K. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J. Paleontol. 70, 185–195 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Francovschi, I., Grădinaru, E., Li, H., Shumlyanskyy, L. & Ciobotaru, V. U–Pb geochronology and Hf isotope systematics of detrital zircon from the late Ediacaran Kalyus Beds (East European Platform): palaeogeographic evolution of southwestern Baltica and constraints on the Ediacaran biota. Precambrian Res. 355, 106062 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vaziri, S. H., Majidifard, M. R. & Laflamme, M. Diverse assemblage of Ediacaran fossils from Central Iran. Sci. Rep. 8, 5060 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, E. F., Nelson, L. L., Tweedt, S. M., Zeng, H. & Workman, J. B. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proc. R. Soc. B 284, 20170934 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon, S., Tarhan, L. G. & Briggs, D. E. G. Decay of the sea anemone Metridium (Actiniaria): implications for the preservation of cnidarian polyps and other soft-bodied diploblast-grade animals. Palaios 32, 388–395 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ou, Q. et al. Dawn of complex animal food webs: a new predatory anthozoan (Cnidaria) from Cambrian. Innovation 3, 100195 (2022).

    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. An early Cambrian mackenziid reveals links to modular Ediacaran macro-organisms. Pap. Palaeontol. 8, e1412 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hall, J. & Clarke, J. M. A Memoir on the Palaeozoic Reticulate Sponges: Constituting the Family Dictyospongidae (Wynkoop Hallenbeck Crawford Company, 1898).

  • Carrera, M., Rustan, J., Vaccari, N. & Ezpeleta, M. A Mississippian hexactinellid sponge from the Western Gondwana: taxonomic and paleobiogeographic implications. Acta Palaeontol. Pol. 63, 63–70 (2018).

  • Rigby, J. K. & Keyes, R. First report of hexactinellid dictyosponges and other sponges from the Upper Mississippian Bangor Limestone, northwestern Alabama. J. Paleontol. 64, 886–897 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Finks, R. M., Reid, R. E. H. & Rigby, J. K. Treatise on Invertebrate Paleontology Part E (Revised) (Geological Society of America and the University of Kansas, 2004).

  • Chahud, A. & Fairchild, T. R. A new invertebrate from the Ponta Grossa Formation (Devonian), Paraná Basin, Brazil. Rev. Bras. Paleontol. 23, 279–282 (2020).

    Article 

    Google Scholar
     

  • Wulff, J. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 103–126 (Springer, 2016).

  • Keupp, H. & Schweigert, G. Neochoiaella n. gen. (Demospongeae, Choiaellidae)—a second poriferan Lazarus taxon from the Solnhofen Plattenkalk (Upper Jurassic, Southern Germany)? Paläontol. Z. 86, 269–274 (2012).

    Article 

    Google Scholar
     

  • Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000).


    Google Scholar
     

  • Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Trends Ecol. Evol. 30, 282–291 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Schlichter, D. in Biology of the Integument: Invertebrates (eds Bereiter-Hahn, J. et al.) 79–95 (Springer, 1984).

  • de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017).

  • Leys, S. P., Mackie, G. O. & Reiswig, H. M. The biology of glass sponges. Adv. Mar. Biol. 52, 1–145 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finks, R. M. in Series in Geology, Notes for Short Course (ed. Broadhead, T. W.) 101–115 (Univ. Tennessee, 1983).

  • Nonnenmacher, T. F., Losa, G. A. & Weibel, E. R. Fractals in Biology and Medicine (Birkhäuser, 2013).

  • Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riesgo, A., Maldonado, M., López-Legentil, S. & Giribet, G. A proposal for the evolution of cathepsin and silicatein in sponges. J. Mol. Evol. 80, 278–291 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackie, G. O., Singla, C. L. & Smith, J. E. Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos. Trans. R. Soc. Lond. B 301, 365–400 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Wu, C. et al. The rangeomorph fossil Charnia from the Ediacaran Shibantan biota in the Yangtze Gorges area, South China. J. Paleontol. https://doi.org/10.1017/jpa.2022.97 (2022).

  • Reid, R. E. H. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland Part I. Monogr. Palaeontogr. Soc. 111, 1–46 (1958).


    Google Scholar
     

  • Xiao, S. Extinctions, morphological gaps, major transitions, stem groups and the origin of major clades, with a focus on early animals. Acta Geol. Sin. Engl. Ed. 96, 1821–1829 (2022).

    Article 

    Google Scholar
     

  • Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronquist, F., Huelsenbeck, J., Teslenko, M., Zhang, C. & Nylander, J. Draft MrBayes version 3.2 manual: tutorials and model summaries. GitHub https://github.com/NBISweden/MrBayes/blob/develop/doc/manual/Manual_MrBayes_v3.2.pdf (2020).

  • Xiao, S., Chen, Z., Pang, K., Zhou, C. & Yuan, X. The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition. J. Geol. Soc. 178, 2020–2135 (2021).

    Article 

    Google Scholar
     

  • Condon, D. et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T., Chen, D., Ding, Y., Zhou, X. & Zhang, G. SIMS U-Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran–Cambrian boundary succession in the Three Gorges area, South China. J. Earth Sci. 31, 69–78 (2020).

    Article 

    Google Scholar
     

  • Okada, Y. et al. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Res. 25, 1027–1044 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • An, Z. et al. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Res. 271, 243–253 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiao, S., Bykova, N., Kovalick, A. & Gill, B. C. Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: implications for stratigraphic correlation and sources of sedimentary organic carbon. Precambrian Res. 302, 171–179 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, C. et al. The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res. 288, 23–38 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Q., Huang, D. & Gong, Y. Sponge fossils from the Cambrian Mantou Formation of Hebi, Henan, Central China. J. China Univ. Geosci. 37, 129–135 (2012).

    CAS 

    Google Scholar
     

  • Virtual Collection (Digital Atlas of Ancient Life, accessed 23 April 2024); www.digitalatlasofancientlife.org/vc/.



  • Source link

    UtahDigitalNews.com