Nature

Entanglement and iSWAP gate between molecular qubits

4


  • DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yelin, S. F., Kirby, K. & Côté, R. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, J., Kais, S., Wei, Q., Herschbach, D. & Friedrich, B. Implementation of quantum logic gates using polar molecules in pendular states. J. Chem. Phys. 138, 024104 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, E. R. & Campbell, W. C. Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A 98, 040302 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J., He, J., Jin, M., Chen, G. & Wang, D. Seconds-scale coherence on nuclear spin transitions of ultracold polar molecules in 3d optical lattices. Phys. Rev. Lett. 128, 223201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, S. A potentially realizable quantum computer. Science 261, 1569–1571 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gershenfeld, N. A. & Chuang, I. L. Bulk spin-resonance quantum computation. Science 275, 350–356 (1997).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, J. A. & Mosca, M. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. J. Chem. Phys. 109, 1648–1653 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Menicucci, N. C. & Caves, C. M. Local realistic model for the dynamics of bulk-ensemble NMR information processing. Phys. Rev. Lett. 88, 167901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article 
    ADS 

    Google Scholar
     

  • ACME Collaboration Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    CAS 

    Google Scholar
     

  • Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang, F., Winkler, K., Strauss, C., Grimm, R. & Hecker Denschlag, J. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg, J. S., Christakis, L., Guardado-Sanchez, E., Yan, Z. Z. & Bakr, W. S. Observation of the Hanbury Brown–Twiss effect with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rosenband, T., Grimes, D. D. & Ni, K.-K. Elliptical polarization for molecular stark shift compensation in deep optical traps. Opt. Express 26, 19821–19825 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, L. R. B., Patenotte, G. E., Park, A. J., Gebretsadkan, S. F. & Ni, K.-K. Site-selective preparation and multistate readout of molecules in optical tweezers. PRX Quantum 5, 020344 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Aymar, M. & Dulieu, O. Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets. J. Chem. Phys. 122, 204302 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Novikova, I. & Malinovskaya, S. A.) 3–38 (World Scientific, 2015).

  • Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 4748–4769 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koller, A. P., Mundinger, J., Wall, M. L. & Rey, A. M. Demagnetization dynamics of noninteracting trapped fermions. Phys. Rev. A 92, 033608 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chew, Y. T. et al. Ultra-precise holographic optical tweezers array. Preprint at https://arxiv.org/abs/2407.20699 (2024).

  • Chew, Y. et al. Ultrafast energy exchange between two single Rydberg atoms on a nanosecond timescale. Nat. Photon. 16, 724–729 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aldegunde, J. & Hutson, J. M. Hyperfine structure of alkali-metal diatomic molecules. Phys. Rev. A 96, 042506 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homeier, L. et al. Antiferromagnetic bosonic tJ models and their quantum simulation in tweezer arrays. Phys. Rev. Lett. 132, 230401 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuznetsova, E., Rittenhouse, S. T., Sadeghpour, H. R. & Yelin, S. F. Rydberg-atom-mediated nondestructive readout of collective rotational states in polar-molecule arrays. Phys. Rev. A 94, 032325 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K., Williams, C. P., Picard, L. R. B., Yao, N. Y. & Ni, K.-K. Enriching the quantum toolbox of ultracold molecules with Rydberg atoms. PRX Quantum 3, 030339 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guttridge, A. et al. Observation of Rydberg blockade due to the charge-dipole interaction between an atom and a polar molecule. Phys. Rev. Lett. 131, 013401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guardado-Sanchez, E. et al. Quench dynamics of a Fermi gas with strong nonlocal interactions. Phys. Rev. X 11, 021036 (2021).

    CAS 

    Google Scholar
     

  • Carroll, A. N. et al. Observation of generalized t-J spin dynamics with tunable dipolar interactions. Preprint at arxiv.org/abs/2404.18916 (2024).

  • Shaw, A. L. et al. Erasure-cooling, control, and hyper-entanglement of motion in optical tweezers. Preprint at arxiv.org/abs/2311.15580 (2023).

  • Vexiau, R. et al. Dynamic dipole polarizabilities of heteronuclear alkali dimers: optical response, trapping and control of ultracold molecules. Int. Rev. Phys. Chem. 36, 709–750 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. T. et al. Forming a single molecule by magnetoassociation in an optical tweezer. Phys. Rev. Lett. 124, 253401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, L. R. B. et al. High resolution photoassociation spectroscopy of the excited \({c}^{3}{\Sigma }_{1}^{+}\) potential of 23Na133Cs. Phys. Rev. Res. 5, 023149 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boradjiev, I. I. & Vitanov, N. V. Control of qubits by shaped pulses of finite duration. Phys. Rev. A 88, 013402 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    Article 

    Google Scholar
     

  • Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krämer, S., Plankensteiner, D., Ostermann, L. & Ritsch, H. QuantumOptics.jl: a Julia framework for simulating open quantum systems. Comput. Phys. Commun. 227, 109–116 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Singh, R. K., Senthilkumaran, P. & Singh, K. Tight focusing of vortex beams in presence of primary astigmatism. J. Opt. Soc. Am. A 26, 576–588 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Colbert, D. T. & Miller, W. H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Haegeman, J. Krylovkit (v0.8.1). Zenodo https://doi.org/10.5281/zenodo.12122079 (2024).

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall, 1994).

  • Picard, L. R. et al. Experimental data and simulation code for Entanglement and iSWAP gate between molecular qubits. Harvard Dataverse https://doi.org/10.7910/DVN/3UEBEV (2024).

  • Holland, C. M., Lu, Y., Li, S. J., Welsh, C. L. & Cheuk, L. W. Demonstration of erasure conversion in a molecular tweezer array. Preprint at https://arxiv.org/abs/2406.02391 (2024).



  • Source link

    UtahDigitalNews.com