Nature

Fault-network geometry influences earthquake frictional behaviour

30


  • Avouac, J.-P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 43, 233–271 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harris, R. A. Large earthquakes and creeping faults. Rev. Geophys. 55, 169–198 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495, 112–134 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Harbord, C. W., Nielsen, S. B., De Paola, N. & Holdsworth, R. E. Earthquake nucleation on rough faults. Geology 45, 931–934 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Eijsink, A. M., Kirkpatrick, J. D., Renard, F. & Ikari, M. J. Fault surface morphology as an indicator for earthquake nucleation potential. Geology 50, 1356–1360 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goebel, T. H., Brodsky, E. E. & Dresen, G. Fault roughness promotes earthquake‐like aftershock clustering in the lab. Geophys. Res. Lett. 50, e2022GL101241 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Morad, D., Sagy, A., Tal, Y. & Hatzor, Y. H. Fault roughness controls sliding instability. Earth Planet. Sci. Lett. 579, 117365 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhat, H. S., Olives, M., Dmowska, R. & Rice, J. R. Role of fault branches in earthquake rupture dynamics. J. Geophys. Res. Solid Earth 112, B11309 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Romanet, P., Bhat, H. S., Jolivet, R. & Madariaga, R. Fast and slow slip events emerge due to fault geometrical complexity. Geophys. Res. Lett. 45, 4809–4819 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cattania, C. & Segall, P. Precursory slow slip and foreshocks on rough faults. J. Geophys. Res. Solid Earth 126, e2020JB020430 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ozawa, S. & Ando, R. Mainshock and aftershock sequence simulation in geometrically complex fault zones. J. Geophys. Res. Solid Earth 126, e2020JB020865 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F. & Gaudemer, Y. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. J. Geophys. Res. Solid Earth 121, 3666–3685 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, V. C. & Hirth, G. Elastic impact consequences for high-frequency earthquake ground motion. Geophys. Res. Lett. 47, e2019GL086302 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Biasi, G. P. & Wesnousky, S. G. Rupture passing probabilities at fault bends and steps, with application to rupture length probabilities for earthquake early warning. Bull. Seismol. Soc. Am. 111, 2235–2247 (2021).

    Article 

    Google Scholar
     

  • Chu, S. X., Tsai, V. C., Trugman, D. T. & Hirth, G. Fault interactions enhance high-frequency earthquake radiation. Geophys. Res. Lett. 48, e2021GL095271 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez Padilla, A. M., Oskin, M. E., Rockwell, T. K., Delusina, I. & Singleton, D. M. Joint earthquake ruptures of the San Andreas and San Jacinto faults, California, USA. Geology 50, 387–391 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, V. C., Hirth, G., Trugman, D. T. & Chu, S. X. Impact versus frictional earthquake models for high-frequency radiation in complex fault zones. J. Geophys. Res. Solid Earth 126, e2021JB022313 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gauriau, J. & Dolan, J. F. Relative structural complexity of plate-boundary fault systems controls incremental slip-rate behavior of major strike-slip faults. Geochem. Geophys. Geosyst. 22, e2021GC009938 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Scholz, C. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bizzarri, A. & Bhat, H. S. (eds) The Mechanics of Faulting: From Laboratory to Real Earthquakes (Research Signpost, 2012).

  • Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X. & Furuya, M. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties. J. Geophys. Res. Solid Earth 118, 316–331 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lockner, D., Morrow, C., Moore, D. & Hickman, S. Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472, 82–85 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, D. E. & Rymer, M. J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795–797 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, D. E., McLaughlin, R. J. & Lienkaemper, J. J. Serpentinite in a creeping trace of the Bartlett Springs Fault, Northern California. Geological Society of America Abstracts with Programs, Vol. 47, No. 7, p. 775, Paper No. 306-3 (2015).

  • Lindsey, E. O. & Fialko, Y. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. J. Geophys. Res. Solid Earth 121, 1097–1113 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wei, M., Sandwell, D. & Fialko, Y. A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California. J. Geophys. Res. Solid Earth 114, B07402 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Funning, G. J., Burgmann, R., Ferretti, A., Novali, F. & Fumagalli, A. Creep on the Rodgers Creek fault, northern San Francisco Bay area from a 10 year PS-InSAR dataset. Geophys. Res. Lett. 34, L19306 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Lienkaemper, J. J., McFarland, F. S., Simpson, R. W. & Caskey, S. J. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data. Bull. Seismol. Soc. Am. 104, 3094–3114 (2014).

    Article 

    Google Scholar
     

  • Jolivet, R. et al. The burst‐like behavior of aseismic slip on a rough fault: the creeping section of the Haiyuan fault, China. Bull. Seismol. Soc. Am. 105, 480–488 (2014).

    Article 

    Google Scholar
     

  • Jolivet, R. et al. Spatio-temporal evolution of aseismic slip along the Haiyuan fault, China: implications for fault frictional properties. Earth Planet. Sci. Lett. 377–378, 23–33 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y., Bürgmann, R. & Taira, T. Spatiotemporal variations of surface deformation, shallow creep rate, and slip partitioning between the San Andreas and southern Calaveras Fault. J. Geophys. Res. Solid Earth 128, e2022JB025363 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lindsey, E. O., Fialko, Y., Bock, Y., Sandwell, D. T. & Bilham, R. Localized and distributed creep along the southern San Andreas Fault. J. Geophys. Res. Solid Earth 119, 7909–7922 (2014). (2014).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, K. M., Murray, J. R. & Wespestad, C. Creep rate models for the 2023 US National Seismic Hazard Model: physically constrained inversions for the distribution of creep on California faults. Seismol. Res. Lett. 93, 3151–3169 (2022).

    Article 

    Google Scholar
     

  • Mitchell, T. M. & Faulkner, D. R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31, 802–816 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N. & Scholz, C. H. Roughness of natural fault surfaces. Geophys. Res. Lett. 14, 29–32 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Candela, T. et al. Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res. Solid Earth 117, B08409 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K. & Bilek, S. L. Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Reches, Z. & Fineberg, J. Earthquakes as dynamic fracture phenomena. J. Geophys. Res. Solid Earth 128, e2022JB026295 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Marone, C., & Saffer, D. M. in The Seismogenic Zone of Subduction Thrust Faults (eds Dixon, T. H. & Moore, J. C.) 346–369 (Columbia Univ. Press, 2007).

  • Holden, C. et al. The 2016 Kaikōura earthquake revealed by kinematic source inversion and seismic wavefield simulations: slow rupture propagation on a geometrically complex crustal fault network. Geophys. Res. Lett. 44, 11,320–11,328 (2017).

    Article 

    Google Scholar
     

  • Swanson, M. T. in Earthquakes: Radiated Energy and the Physics of Faulting (eds Abercrombie, R. et al.) 167–179 (American Geophysical Union, 2006).

  • Antoine, S. L., Klinger, Y., Delorme, A. & Gold, R. D. Off-fault deformation in regions of complex fault geometries: the 2013, Mw7.7, Baluchistan rupture (Pakistan). J. Geophys. Res. Solid Earth 127, e2022JB024480 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y.-K., Ross, Z. E., Cochran, E. S. & Lapusta, N. A unified perspective of seismicity and fault coupling along the San Andreas Fault. Sci. Adv. 8, eabk1167 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunham, E. M., Belanger, D., Cong, L. & Kozdon, J. E. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: nonplanar faults. Bull. Seismol. Soc. Am. 101, 2308–2322 (2011).

    Article 

    Google Scholar
     

  • Ross, E. O., Reber, J. E. & Titus, S. J. Relating slip behavior to off-fault deformation using physical models. Geophys. Res. Lett. 49, e2021GL096784 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Boettcher, M. S. & Jordan, T. H. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res. Solid Earth 109, B12302 (2004).

    Article 
    ADS 

    Google Scholar
     

  • McGuire, J. et al. Variations in earthquake rupture properties along the Gofar transform fault, East Pacific Rise. Nat. Geosci. 5, 336–341 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ikari, M. J. & Kopf, A. J. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. Sci. Adv. 3, e1701269 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaussard, E. et al. Interseismic coupling and refined earthquake potential on the Hayward-Calaveras fault zone. J. Geophys. Res. Solid Earth 120, 8570–8590 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Murray, J. R., Minson, S. E. & Svarc, J. L. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data. J. Geophys. Res. Solid Earth 119, 6023–6047 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kaduri, M., Gratier, J.-P., Renard, F., Çakir, Z. & Lasserre, C. The implications of fault zone transformation on aseismic creep: example of the North Anatolian Fault, Turkey. J. Geophys. Res. Solid Earth 122, 4208–4236 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Aslan, G. et al. Shallow creep along the 1999 Izmit earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017). J. Geophys. Res. Solid Earth 124, 2218–2236 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jolivet, R. et al. Daily to centennial behavior of aseismic slip along the central section of the North Anatolian Fault. J. Geophys. Res. Solid Earth 128, e2022JB026018 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zelenin, E., Bachmanov, D., Garipova, S., Trifonov, V. & Kozhurin, A. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset. Earth Syst. Sci. Data. 14, 4489–4503 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dalaison, M., Jolivet, R., van Rijsingen, E. M. & Michel, S. The interplay between seismic and aseismic slip along the Chaman fault illuminated by InSAR. J. Geophys. Res. Solid Earth 126, e2021JB021935 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Barnhart, W. D. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR. J. Geophys. Res. Solid Earth. 122, 372–386 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fattahi, H. & Amelung, F. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys. Res. Lett. 43, 8399–8406 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ruleman, C. A., Crone, A. J., Machette, M. N., Haller, K. M., & Rukstales, K. S. Map and database of probable and possible Quaternary faults in Afghanistan. U.S. Geological Survey Open-File Report 2007-1103 (2007).

  • Lee, J. Data and code for ‘Fault network geometry influences earthquake frictional behavior’. Zenodo https://doi.org/10.5281/zenodo.10982013 (2024).

  • Fenimore, C., Libert, J. & Brill, M. Algebraic constraints implying monotonicity for cubics. National Institute of Standards and Technology https://doi.org/10.6028/NIST.IR.6453 (2000).



  • Source link

    UtahDigitalNews.com