Nature

Large-area, self-healing block copolymer membranes for energy conversion

42


  • Membranes Market Size, Share & Industry Analysis Report No. FBI102982 (Fortune Business Insights, 2024); www.fortunebusinessinsights.com/membranes-market-102982.

  • Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 6343 (2017).

  • Gennis, R. B. Biomembranes (Springer, 1989); https://doi.org/10.1007/978-1-4757-2065-5.

  • Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, 2002).

  • Pusch, W. Efficiency of synthetic membranes in comparison with biological membranes. Desalination 62, 5–18 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Goel, G., Hélix-Nielsen, C., Upadhyaya, H. M. & Goel, S. A bibliometric study on biomimetic and bioinspired membranes for water filtration. npj Clean Water 4, 41 (2021).

  • Gouveia, M. G. et al. Polymersome-based protein drug delivery – quo vadis? Chem. Soc. Rev. 52, 728–778 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Palivan, C. G. et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 45, 377–411 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beltramo, P. J., Scheidegger, L. & Vermant, J. Toward realistic large-area cell membrane mimics: excluding oil, controlling composition, and including ion channels. Langmuir 34, 5880–5888 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryu, H., Fuwad, A., Kim, S. M. & Jeon, T.-J. Multilayered film for the controlled formation of freestanding lipid bilayers. Colloids Surf. B Biointerfaces 199, 111552 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puiggalí-Jou, A., del Valle, L. J. & Alemán, C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. Soft Matter 15, 2722–2736 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Belegrinou, S. et al. Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter 6, 179–186 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kowal, J., Zhang, X., Dinu, I. A., Palivan, C. G. & Meier, W. Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett. 3, 59–63 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Tanner, P., Graff, A., Palivan, C. G. & Meier, W. Mimicking the cell membrane with block copolymer membranes. J. Polym. Sci. A Polym. Chem. 50, 2293–2318 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nardin, C., Winterhalter, M. & Meier, W. Giant free-standing ABA triblock copolymer membranes. Langmuir 16, 7708–7712 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Sargantanis, I. G. & Karim, M. N. Prediction of aqueous two-phase equilibrium using the Flory–Huggins model. Ind. Eng. Chem. Res. 36, 204–211 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bayliss, N. & Schmidt, B. V. K. J. Hydrophilic polymers: current trends and visions for the future. Prog. Polym. Sci. 147, 101753 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ryden, J. & Albertsson, P. Interfacial tension of dextran—polyethylene glycol—water two—phase systems. J. Colloid Interface Sci. 37, 219–222 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fleer, G. J., Cohen-Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T. & Vincent, B. Polymers at Interfaces (Springer, 1998).

  • Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z., Feng, T. & Russell, T. P. Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles. Langmuir 29, 13407–13413 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanke, W. & Schlue, W.-R. Planar Lipid Bilayers (Elsevier, 1993); https://doi.org/10.1016/C2009-0-03331-5.

  • Waldbillig, R. C. & Szabo, G. Planar bilayer membranes from pure lipids. Biochim. Biophys. Acta Biomembr. 557, 295–305 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Penedo, M. et al. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Sci. Adv. 7, eabj4990 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itel, F. et al. Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules 47, 7588–7596 (2014).

  • Berezin, S. K. Valinomycin as a classical anionophore: mechanism and ion selectivity. J. Membr. Biol. 248, 713–726 (2015).

  • Bennett, M. V. L., Wurzel, M. & Grundfest, H. The electrophysiology of electric organs of marine electric fishes. J. Gen. Physiol. 44, 757–804 (1961).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guha, A. et al. Powering electronic devices from salt gradients in AA‐battery‐sized stacks of hydrogel‐infused paper. Adv. Mater. 33, 2101757 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowman, C. L. & Baglioni, A. Application of the Goldman-Hodgkin-Katz current equation to membrane current-voltage data. J. Theor. Biol. 108, 1–29 (1984).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, T., Kitazumi, Y., Kano, K. & Shirai, O. Permselectivity of gramicidin A channels based on single‐channel recordings. Electroanalysis 32, 1093–1099 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andreoli, T. E., Tieffenberg, M. & Tosteson, D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J. Gen. Physiol. 50, 2527–2545 (1967).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M., Dubbs, T. & Fried, J. R. Planar bilayer measurements of alamethicin and gramicidin reconstituted in biomimetic block copolymers. Langmuir 33, 1171–1179 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barboiu, M. et al. An artificial primitive mimic of the Gramicidin-A channel. Nat. Commun. 5, 4142 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, M., Kriebel, J. K., Tosteson, M. T. & Whitesides, G. M. Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garni, M., Thamboo, S., Schoenenberger, C. A. & Palivan, C. G. Biopores/membrane proteins in synthetic polymer membranes. Biochim. Biophys. Acta Biomembr. 1859, 619–638 (2017).

  • Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561–3566 (1972).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winterhalter, M. Black lipid membranes. Curr. Opin. Colloid Interface Sci. 5, 250–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, P. K., Gupta, N. & Dankov, P. I. Characterization of polydimethylsiloxane (PDMS) as a wearable antenna substrate using resonance and planar structure methods. Int. J. Electron. Commun. 127, 153455 (2020).

    Article 

    Google Scholar
     

  • Kutikov, A. B. & Song, J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng. 1, 463–480 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buzza, D. M. A., Fletcher, P. D. I., Georgiou, T. K. & Ghasdian, N. Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers–templated polymersomes. Langmuir 29, 14804–14814 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inam, M. et al. Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers. ACS Cent. Sci. 4, 63–70 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sproncken, C. C. M. et al. Dataset for ‘Large-area, self-healing block copolymer membranes for energy conversion’. Zenodo https://doi.org/10.5281/zenodo.7818212 (2024).

  • Naumowicz, M., Petelska, A. D. & Figaszewski, Z. A. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cell. Mol. Biol. Lett. 8, 5–18 (2003).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    UtahDigitalNews.com