Large-area, self-healing block copolymer membranes for energy conversion
Membranes Market Size, Share & Industry Analysis Report No. FBI102982 (Fortune Business Insights, 2024); www.fortunebusinessinsights.com/membranes-market-102982.
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, 6343 (2017).
Gennis, R. B. Biomembranes (Springer, 1989); https://doi.org/10.1007/978-1-4757-2065-5.
Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, 2002).
Pusch, W. Efficiency of synthetic membranes in comparison with biological membranes. Desalination 62, 5–18 (1987).
Goel, G., Hélix-Nielsen, C., Upadhyaya, H. M. & Goel, S. A bibliometric study on biomimetic and bioinspired membranes for water filtration. npj Clean Water 4, 41 (2021).
Gouveia, M. G. et al. Polymersome-based protein drug delivery – quo vadis? Chem. Soc. Rev. 52, 728–778 (2023).
Palivan, C. G. et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem. Soc. Rev. 45, 377–411 (2016).
Beltramo, P. J., Scheidegger, L. & Vermant, J. Toward realistic large-area cell membrane mimics: excluding oil, controlling composition, and including ion channels. Langmuir 34, 5880–5888 (2018).
Ryu, H., Fuwad, A., Kim, S. M. & Jeon, T.-J. Multilayered film for the controlled formation of freestanding lipid bilayers. Colloids Surf. B Biointerfaces 199, 111552 (2021).
Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).
Puiggalí-Jou, A., del Valle, L. J. & Alemán, C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. Soft Matter 15, 2722–2736 (2019).
Belegrinou, S. et al. Biomimetic supported membranes from amphiphilic block copolymers. Soft Matter 6, 179–186 (2010).
Kowal, J., Zhang, X., Dinu, I. A., Palivan, C. G. & Meier, W. Planar biomimetic membranes based on amphiphilic block copolymers. ACS Macro Lett. 3, 59–63 (2014).
Zhang, X., Tanner, P., Graff, A., Palivan, C. G. & Meier, W. Mimicking the cell membrane with block copolymer membranes. J. Polym. Sci. A Polym. Chem. 50, 2293–2318 (2012).
Nardin, C., Winterhalter, M. & Meier, W. Giant free-standing ABA triblock copolymer membranes. Langmuir 16, 7708–7712 (2000).
Sargantanis, I. G. & Karim, M. N. Prediction of aqueous two-phase equilibrium using the Flory–Huggins model. Ind. Eng. Chem. Res. 36, 204–211 (1997).
Bayliss, N. & Schmidt, B. V. K. J. Hydrophilic polymers: current trends and visions for the future. Prog. Polym. Sci. 147, 101753 (2023).
Ryden, J. & Albertsson, P. Interfacial tension of dextran—polyethylene glycol—water two—phase systems. J. Colloid Interface Sci. 37, 219–222 (1971).
Fleer, G. J., Cohen-Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T. & Vincent, B. Polymers at Interfaces (Springer, 1998).
Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008).
Sun, Z., Feng, T. & Russell, T. P. Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles. Langmuir 29, 13407–13413 (2013).
Hanke, W. & Schlue, W.-R. Planar Lipid Bilayers (Elsevier, 1993); https://doi.org/10.1016/C2009-0-03331-5.
Waldbillig, R. C. & Szabo, G. Planar bilayer membranes from pure lipids. Biochim. Biophys. Acta Biomembr. 557, 295–305 (1979).
Penedo, M. et al. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Sci. Adv. 7, eabj4990 (2021).
Itel, F. et al. Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules 47, 7588–7596 (2014).
Berezin, S. K. Valinomycin as a classical anionophore: mechanism and ion selectivity. J. Membr. Biol. 248, 713–726 (2015).
Bennett, M. V. L., Wurzel, M. & Grundfest, H. The electrophysiology of electric organs of marine electric fishes. J. Gen. Physiol. 44, 757–804 (1961).
Guha, A. et al. Powering electronic devices from salt gradients in AA‐battery‐sized stacks of hydrogel‐infused paper. Adv. Mater. 33, 2101757 (2021).
Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).
Bowman, C. L. & Baglioni, A. Application of the Goldman-Hodgkin-Katz current equation to membrane current-voltage data. J. Theor. Biol. 108, 1–29 (1984).
Yamaguchi, T., Kitazumi, Y., Kano, K. & Shirai, O. Permselectivity of gramicidin A channels based on single‐channel recordings. Electroanalysis 32, 1093–1099 (2020).
Andreoli, T. E., Tieffenberg, M. & Tosteson, D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J. Gen. Physiol. 50, 2527–2545 (1967).
Martin, M., Dubbs, T. & Fried, J. R. Planar bilayer measurements of alamethicin and gramicidin reconstituted in biomimetic block copolymers. Langmuir 33, 1171–1179 (2017).
Barboiu, M. et al. An artificial primitive mimic of the Gramicidin-A channel. Nat. Commun. 5, 4142 (2014).
Mayer, M., Kriebel, J. K., Tosteson, M. T. & Whitesides, G. M. Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys. J. 85, 2684–2695 (2003).
Garni, M., Thamboo, S., Schoenenberger, C. A. & Palivan, C. G. Biopores/membrane proteins in synthetic polymer membranes. Biochim. Biophys. Acta Biomembr. 1859, 619–638 (2017).
Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561–3566 (1972).
Winterhalter, M. Black lipid membranes. Curr. Opin. Colloid Interface Sci. 5, 250–255 (2000).
Sharma, P. K., Gupta, N. & Dankov, P. I. Characterization of polydimethylsiloxane (PDMS) as a wearable antenna substrate using resonance and planar structure methods. Int. J. Electron. Commun. 127, 153455 (2020).
Kutikov, A. B. & Song, J. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng. 1, 463–480 (2015).
Buzza, D. M. A., Fletcher, P. D. I., Georgiou, T. K. & Ghasdian, N. Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers–templated polymersomes. Langmuir 29, 14804–14814 (2013).
Inam, M. et al. Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers. ACS Cent. Sci. 4, 63–70 (2018).
Wolf, M. P., Salieb-Beugelaar, G. B. & Hunziker, P. PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018).
Sproncken, C. C. M. et al. Dataset for ‘Large-area, self-healing block copolymer membranes for energy conversion’. Zenodo https://doi.org/10.5281/zenodo.7818212 (2024).
Naumowicz, M., Petelska, A. D. & Figaszewski, Z. A. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cell. Mol. Biol. Lett. 8, 5–18 (2003).