Nature

Microbial competition for phosphorus limits the CO2 response of a mature forest

29


  • Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309, 1360–1362 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. & Linder, S. Growth of mature boreal Norway spruce was not affected by elevated CO2 and/or air temperature unless nutrient availability was improved. Tree Physiol. 33, 1192–1205 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hawkesford M. et al. in Marschner’s Mineral Nutrition of Plants 4th edn (eds Rengel, Z. et al.) Ch. 6, 201–228 (Elsevier, 2023).

  • Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Odum, E. P. The strategy of ecosystem development: an understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science 164, 262–270 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, B. L. et al. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 367, 225–234 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norby, R. J. et al. Model–data synthesis for the next generation of forest free‐air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunha, H. F. V. et al. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 608, 558–562 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, M. et al. Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis. Glob. Change Biol. 26, 5856–5873 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25, 376–381 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Attiwill, P. M. & Adams, M. A. Nutrient cycling in forests. New Phytol. 124, 561–582 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytol. 222, 1223–1229 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Crous, K. Y., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilization stimulates stem growth. Plant Soil 391, 293–305 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant Sci. 10, 664 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piñeiro, J., Ochoa-Hueso, R., Drake, J. E., Tjoelker, M. G. & Power, S. A. Water availability drives fine root dynamics in a Eucalyptus woodland under elevated atmospheric CO2 concentration. Funct. Ecol. 34, 2389–2402 (2020).

    Article 

    Google Scholar
     

  • Drake, J. E. et al. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. Glob. Change Biol. 22, 380–390 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Castañeda-Gómez, L. et al. Impacts of elevated carbon dioxide on carbon gains and losses from soil and associated microbes in a Eucalyptus woodland. Soil Biol. Biochem. 143, 107734 (2020).

    Article 

    Google Scholar
     

  • Hasegawa, S., Macdonald, C. A. & Power, S. A. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Glob. Change Biol. 22, 1628–1643 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Xu, X., Thornton, P. E. & Post, W. M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 22, 737–749 (2013).

    Article 

    Google Scholar
     

  • Cross, A. F. & Schlesinger, W. H. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pihlblad, J., Andresen, L. C., Macdonald, C. A., Ellsworth, D. S. & Carrillo, Y. The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland. Biogeosciences 20, 505–521 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J. Ecol. 106, 1483–1494 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ochoa-Hueso, R. et al. Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant Soil 416, 283–295 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castañeda-Gómez, L., Powell, J. R., Pendall, E. & Carrillo, Y. Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions. Biogeochemistry 160, 69–87 (2022).

    Article 

    Google Scholar
     

  • Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).

    Article 

    Google Scholar
     

  • Wang, Y. & Lambers, H. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant Soil 447, 135–156 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iversen, C. M., Hooker, T. D., Classen, A. T. & Norby, R. J. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Glob. Change Biol. 17, 1130–1139 (2011).

    Article 
    ADS 

    Google Scholar
     

  • McKinley, D. C., Romero, J. C., Hungate, B. A., Drake, B. G. & Megonigal, J. P. Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Glob. Change Biol. 15, 2035–2048 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Achat, D. L., Augusto, L., Gallet-Budynek, A. & Loustau, D. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry. 131, 173–202 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Medlyn, B. E. et al. Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biol. 22, 2834–2851 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences. 9, 3547–3569 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q., Wang, Y. P., Matear, R. J., Pitman, A. J. & Dai, Y. J. Nitrogen and phosphorus limitations significantly reduce future allowable CO2 emissions. Geophys. Res. Lett. 41, 632–637 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, K., Fisher, J. B., Phillips, R. P., Powers, J. S. & Brzostek, E. R. Modeling the carbon cost of plant nitrogen and phosphorus uptake across temperate and tropical forests. Front. For. Glob. Change 3, 43 (2020).

    Article 

    Google Scholar
     

  • Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M. & Zaehle, S. Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes. Geosci. Model Dev. 13, 783–803 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, e2022MS003204 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prescott C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).

  • Reichert, T. et al. Plant phosphorus-use and -acquisition strategies in Amazonia. New Phytol. 234, 1126–1143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, G. M. et al. Metabarcoding mites: three years of elevated CO2 has no effect on oribatid assemblages in a Eucalyptus woodland. Pedobiologia 81–82, 150667 (2020).

    Article 

    Google Scholar
     

  • Pathare, V. S. et al. Water availability affects seasonal CO2-induced photosynthetic enhancement in herbaceous species in a periodically dry woodland. Glob. Change Biol. 23, 5164–5178 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1839–1851 (2019).


    Google Scholar
     

  • Zhou, X. M. et al. A cool spot in a biodiversity hotspot: why do tall Eucalyptus forests in southwest Australia exhibit low diversity? Plant Soil 476, 669–688 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Batjes N. H. Overview of Soil Phosphorus Data From a Large International Soil Database (ISRIC – World Soil Information, 2011).

  • Tian D. et al. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology https://doi.org/10.1002/ecy.2812 (2019).

  • Yu, Z. et al. Natural forests promote phosphorus retention in soil. Glob. Change Biol. 28, 1678–1689 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang M. et al. EucFACE phosphorus budget data repository. Figshare https://doi.org/10.6084/m9.figshare.25596213.v3 (2024).

  • Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Paul, K. I. et al. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For. Ecol. Manage. 310, 483–494 (2013).

    Article 

    Google Scholar
     

  • Reidinger, S., Ramsey, M. H. & Hartley, S. E. Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol. 195, 699–706 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gherlenda, A. N. et al. Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant Soil 399, 29–39 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gherlenda, A. N., Moore, B. D., Haigh, A. M., Johnson, S. N. & Riegler, M. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecol. 16, 47 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duursma, R. A. et al. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric CO2 but tracks water availability. Glob. Change Biol. 22, 1666–1676 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Couture, J. J., Meehan, T. D., Kruger, E. L. & Lindroth, R. L. Insect herbivory alters impact of atmospheric change on northern temperate forests. Nat. Plants 1, 15016 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Veneklaas, E. J. Phosphorus resorption and tissue longevity of roots and leaves—importance for phosphorus use efficiency and ecosystem phosphorus cycles. Plant Soil 476, 627–637 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using Malachite Green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Condron, L. M., Moir, J. O., Tiessen, H. & Stewart, J. W. B. Critical evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci. Soc. Am. J. 54, 1261–1266 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bowman, R. A. & Moir, J. O. Basic EDTA as an extractant for soil organic phosphorus. Soil Sci. Soc. Am. J. 57, 1516–1518 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rayment G. E. & Lyons D. J. Soil Chemical Methods—Australasia (CSIRO, 2010); ebooks.publish.csiro.au/content/ISBN/9780643101364

  • Farrell, M. et al. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. Soils 50, 169–178 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. R., Condron, L. M., Davis, M. R. & Sherlock, R. R. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil. Plant Soil 220, 151–163 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Barrow, N. J., Sen, A., Roy, N. & Debnath, A. The soil phosphate fractionation fallacy. Plant Soil 459, 1–11 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14, 319–329 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Körner, C. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol. 172, 393–411 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 69, 1–48 (2015).


    Google Scholar
     

  • Carpenter, J. & Bithell, J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat. Med. 19, 1141–1164 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muff, S., Nilsen, E. B., O’Hara, R. B. & Nater, C. R. Rewriting results sections in the language of evidence. Trends Ecol. Evol. 37, 203–210 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, M. et al. Data for ‘Microbial competition for phosphorus limits CO2 response of a mature forest’. Figshare https://doi.org/10.6084/m9.figshare.25596213.v3 (2024).



  • Source link

    UtahDigitalNews.com