Nature

Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ

57


  • Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, J. et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals. Chin. Phys. Lett. 40, 117302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. High-temperature superconductivity with zero-resistance and strange metal behavior in La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2307.14819 (2023).

  • Liu, Z. et al. Electronic correlations and energy gap in the bilayer nickelate La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2307.02950 (2023).

  • Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2309.01148 (2023).

  • Zhou, Y. et al. Evidence of filamentary superconductivity in pressurized La3Ni2O7 single crystals. Preprint at https://doi.org/10.48550/arXiv.2311.12361 (2023).

  • Yang, Y., Zhang, G.-M. & Zhang, F.-C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure. Phys. Rev. B 108, L201108 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qin, Q. & Yang, Y. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7. Phys. Rev. B 108, L140504 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, Y., Qin, M. & Zhang, G.-M. Effective bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure. Chin. Phys. Lett. 40, 127401 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gu, Y., Le, C., Yang, Z., Wu, X. & Hu, J. Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2306.07275 (2023).

  • Yang, Q.-G., Wang, D. & Wang, Q.-H. Possible s±-wave superconductivity in La3Ni2O7. Phys. Rev. B 108, L140505 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qu, X.-Z. et al. Bilayer tJJ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Lin, L.-F., Moreo, A., Maier, T. A. & Dagotto, E. Electronic structure, magnetic correlations, and superconducting pairing in the reduced Ruddlesden–Popper bilayer La3Ni2O6 under pressure: different role of d3z2−r2 orbital compared with La3Ni2O7. Phys. Rev. B 109, 045151 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, K.-W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, D. et al. Visualization of dopant oxygen atoms in a Bi2Sr2CaCu2O8+δ superconductor. Adv. Funct. Mater. 29, 1903843 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Findlay, S. D. et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hüe, F., Rodenburg, J. M., Maiden, A. M., Sweeney, F. & Midgley, P. A. Wave-front phase retrieval in transmission electron microscopy via ptychography. Phys. Rev. B 82, 121415 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Voronin, V. I. et al. Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure. Nuclear 470, 202–209 (2001).

    CAS 

    Google Scholar
     

  • Sui, X. et al. Electronic properties of nickelate superconductor R3Ni2O7 with oxygen vacancies. Preprint at https://doi.org/10.48550/arXiv.2312.01271 (2023).

  • Geisler, B. et al. Optical properties and electronic correlations in La3Ni2O7-δ bilayer nickelates under high pressure. Preprint at https://doi.org/10.48550/arXiv.2401.04258 (2024).

  • Liu, Z. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. China Phys. Mech. Astron. 66, 217411 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pellegrin, E. et al. O 1s near-edge X-ray absorption of La2−xSrxNiO4+δ: holes, polarons, and excitons. Phys. Rev. B 53, 10667–10679 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abbate, M. et al. Electronic structure and metal–insulator transition in LaNiO3−δ. Phys. Rev. B 65, 155101 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Site-selective probe of magnetic excitations in rare-earth nickelates using resonant inelastic X-ray scattering. Phys. Rev. X 8, 031014 (2018).

    CAS 

    Google Scholar
     

  • Lechermann, F., Gondolf, J., Bötzel, S. & Eremin, I. M. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure. Phys. Rev. B 108, L201121 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X., Jiang, P., Li, J., Zhong, Z. & Lu, Y. Critical charge and spin instabilities in superconducting La3Ni2O7. Preprint at https://doi.org/10.48550/arXiv.2307.07154 (2023).

  • Shilenko, D. A. & Leonov, I. V. Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer La3Ni2O7 under pressure. Phys. Rev. B 108, 125105 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wú, W., Luo, Z., Yao, D.-X. & Wang, M. Superexchange and charge transfer in the nickelate superconductor La3Ni2O7 under pressure. Sci. China Phys. Mech. Astron. 67, 117402 (2024).

    Article 

    Google Scholar
     

  • Ruan, W. et al. Relationship between the parent charge transfer gap and maximum transition temperature in cuprates. Sci. Bull. 61, 1826–1832 (2016).

    Article 
    CAS 

    Google Scholar
     

  • O’Mahony, S. M. et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity. Proc. Natl Acad. Sci. USA 119, e2207449119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, G. A. et al. Synthesis and electronic properties of Ndn+1NinO3n+1 Ruddlesden–Popper nickelate thin films. Phys. Rev. Mater. 6, 055003 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bocquet, A. E., Mizokawa, T., Saitoh, T., Namatame, H. & Fujimori, A. Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. Phys. Rev. B 46, 3771–3784 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C. T. et al. Electronic states in La2−xSrxCuO4+δ probed by soft-X-ray absorption. Phys. Rev. Lett. 66, 104–107 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, structure, and properties of the layered perovskite La3Ni2O7−δ. J. Solid State Chem. 108, 402–409 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taniguchi, S. et al. Transport, magnetic and thermal properties of La3Ni2O7−δ. J. Phys. Soc. Jpn 64, 1644–1650 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. High oxygen pressure floating zone growth and crystal structure of the metallic nickelates R4Ni3O10 (R = La,Pr). Phys. Rev. Mater. 4, 083402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden–Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020–5026 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Polymorphism in the Ruddlesden–Popper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640–3645 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Preprint at https://doi.org/10.48550/arxiv.2312.07341 (2023).

  • Robert, H. L., Diederichs, B. & Müller-Caspary, K. Contribution of multiple plasmon scattering in low-angle electron diffraction investigated by energy-filtered atomically resolved 4D-STEM. Appl. Phys. Lett. 121, 213502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Allen, L. J., D’Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 11–22 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bürger, J., Riedl, T. & Lindner, J. K. N. Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 219, 113118 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Z., Chen, Z. & Wang, Y. Dataset for: visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7−δ. Zenodo https://doi.org/10.5281/zenodo.10947322 (2024).

  • Chen, Z., Jiang, Y., Muller, D. A. & Odstrcil, M. PtychoShelves_EM, source code for multislice electron ptychography. Zenodo https://doi.org/10.5281/zenodo.4659690 (2021).



  • Source link

    UtahDigitalNews.com