Injectable ultrasonic sensor for wireless monitoring of intracranial signals
Güiza, F., Depreitere, B., Piper, I., Van den Berghe, G. & Meyfroidt, G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury. Crit. Care Med. 41, 554–564 (2013).
Zhang, X. et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol. Meas. 38, R143–R182 (2017).
Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).
Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).
Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).
Yang, S. M. et al. Heter-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, 2108203 (2022).
Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).
Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).
Cheng, W. et al. Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing. Nat. Mater. 22, 1352–1360 (2023).
Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).
Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).
Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).
Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).
Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).
Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).
Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).
Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).
Sonmezoglu, S. et al. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 39, 855–864 (2021).
Shi, C. et al. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).
Nam, J. et al. A hydrogel-based ultrasonic backscattering wireless biochemical sensing. Front. Bioeng. Biotechnol. 8, 596370 (2020).
Farhoudi, N., Laurentius, L. B., Magda, J. J., Reiche, C. F. & Solzbacher, F. In vivo monitoring of glucose using ultrasound-induced resonance in implantable smart hydrogel microstructures. ACS Sens. 6, 3587–3595 (2021).
Gilard, V. et al. Small versus large catheters for ventriculostomy in the management of intraventricular hemorrhage. World Neurosurg. 97, 117–122 (2017).
Tang, H. et al. Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks. Adv. Funct. Mater. 28, 1801127 (2018).
Li, S., Zhao, D., Niu, H., Zhu, X. & Zang, J. Observation of elastic topological states in soft materials. Nat. Commun. 9, 1370 (2018).
Tang, H. et al. Soft and disordered hyperuniform elastic metamaterials for highly efficient vibration concentration. Natl Sci. Rev. 9, nwab133 (2022).
Tang, H. et al. Bioinspired soft elastic metamaterials for reconstruction of natural hearing. Adv. Sci. 10, 2207273 (2023).
Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).
Wang, Z., Wei, H., Huang, Y., Wei, Y. & Chen, J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 52, 2992–3034 (2023).
Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).
Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01800-0 (2023).
Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).
Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
Lenfeldt, N., Koskinen, L.-O. D., Bergenheim, A. T., Malm, J. & Eklund, A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 68, 155–158 (2007).
Tang, H. Metagel-ultrasonic-sensing. GitHub https://github.com/Cyberpunk2207/Metagel-ultrasonic-sensing.git (2024).