Nature

Injectable ultrasonic sensor for wireless monitoring of intracranial signals

16


  • Güiza, F., Depreitere, B., Piper, I., Van den Berghe, G. & Meyfroidt, G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury. Crit. Care Med. 41, 554–564 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol. Meas. 38, R143–R182 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. M. et al. Heter-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv. Mater. 34, 2108203 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat. Commun. 13, 3009 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, W. et al. Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing. Nat. Mater. 22, 1352–1360 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhvapathy, S. R. et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonmezoglu, S. et al. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 39, 855–864 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, C. et al. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 7, eabf6312 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, J. et al. A hydrogel-based ultrasonic backscattering wireless biochemical sensing. Front. Bioeng. Biotechnol. 8, 596370 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhoudi, N., Laurentius, L. B., Magda, J. J., Reiche, C. F. & Solzbacher, F. In vivo monitoring of glucose using ultrasound-induced resonance in implantable smart hydrogel microstructures. ACS Sens. 6, 3587–3595 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilard, V. et al. Small versus large catheters for ventriculostomy in the management of intraventricular hemorrhage. World Neurosurg. 97, 117–122 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Hollow-out patterning ultrathin acoustic metasurfaces for multifunctionalities using soft fiber/rigid bead networks. Adv. Funct. Mater. 28, 1801127 (2018).

    Article 

    Google Scholar
     

  • Li, S., Zhao, D., Niu, H., Zhu, X. & Zang, J. Observation of elastic topological states in soft materials. Nat. Commun. 9, 1370 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. Soft and disordered hyperuniform elastic metamaterials for highly efficient vibration concentration. Natl Sci. Rev. 9, nwab133 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Bioinspired soft elastic metamaterials for reconstruction of natural hearing. Adv. Sci. 10, 2207273 (2023).

    Article 

    Google Scholar
     

  • Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z., Wei, H., Huang, Y., Wei, Y. & Chen, J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 52, 2992–3034 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01800-0 (2023).

  • Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenfeldt, N., Koskinen, L.-O. D., Bergenheim, A. T., Malm, J. & Eklund, A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 68, 155–158 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. Metagel-ultrasonic-sensing. GitHub https://github.com/Cyberpunk2207/Metagel-ultrasonic-sensing.git (2024).



  • Source link

    UtahDigitalNews.com